Cell sorting by differential cell motility: a model for pattern formation in Dictyostelium.
نویسندگان
چکیده
In the slug stage of the cellular slime mold Dictyostelium discoideum, prespore cells and four types of prestalk cells show a well-defined spatial distribution in a migrating slug. We have developed a continuous mathematical model for the distribution pattern of these cell types based on the balance of force in individual cells. In the model, cell types are assumed to have different properties in cell motility, i.e. different motive force, the rate of resistance against cell movement, and diffusion coefficient. Analysis of the stationary solution of the model shows that combination of these parameters and slug speed determines the three-dimensional shape of a slug and cell distribution pattern within it. Based on experimental data of slug motive force and velocity measurements, appropriate sets of parameters were chosen so that the cell-type distribution at stationary state matches the distribution in real slugs. With these parameters, we performed numerical calculation of the model in two-dimensional space using a moving particle method. The results reproduced many of the basic features of slug morphogenesis, i.e. cell sorting, translocation of the prestalk region, elongation of the slug, and its steady migration.
منابع مشابه
Modelling cell movement, cell differentiation, cell sorting and proportion regulation in Dictyostelium discoideum aggregations.
Understanding the mechanisms that control tissue morphogenesis and homeostasis is a central goal not only in developmental biology but also has great relevance for our understanding of various diseases, including cancer. A model organism that is widely used to study the control of tissue morphogenesis and proportioning is the Dictyostelium discoideum. While there are mathematical models describ...
متن کاملCell type-specific filamin complex regulation by a novel class of HECT ubiquitin ligase is required for normal cell motility and patterning.
Differential cell motility, which plays a key role in many developmental processes, is perhaps most evident in examples of pattern formation in which the different cell types arise intermingled before sorting out into discrete tissues. This is thought to require heterogeneities in responsiveness to differentiation-inducing signals that result in the activation of cell type-specific genes and 's...
متن کاملGait Generation for a Bipedal System By Morris-Lecar Central Pattern Generator
The ability to move in complex environments is one of the most important features of humans and animals. In this work, we exploit a bio-inspired method to generate different gaits in a bipedal locomotion system. We use the 4-cell CPG model developed by Pinto [21]. This model has been established on symmetric coupling between the cells which are responsible for generating oscillatory signals. Th...
متن کاملRegulation of Rap1 activity is required for differential adhesion, cell-type patterning and morphogenesis in Dictyostelium.
Regulated cell adhesion and motility have important roles during growth, development and tissue homeostasis. Consequently, great efforts have been made to identify genes that control these processes. One candidate is Rap1, as it has been implicated in the regulation of adhesion and motility in cell culture. To further study the role of Rap1 during multicellular development, we generated a mutan...
متن کاملMoving Forward Moving Backward: Directional Sorting of Chemotactic Cells due to Size and Adhesion Differences
Differential movement of individual cells within tissues is an important yet poorly understood process in biological development. Here we present a computational study of cell sorting caused by a combination of cell adhesion and chemotaxis, where we assume that all cells respond equally to the chemotactic signal. To capture in our model mesoscopic properties of biological cells, such as their s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 226 2 شماره
صفحات -
تاریخ انتشار 2004